Tag Archives: mpfs

Why pNFS can be a big deal even if NFS4.1 isn’t…

Posted on by

It’s been a little while since I’ve posted, mostly due to my life being turned on it’s rear after our first child was born 8 weeks ago.  As things start to settle into a rhythm (as much as is possible) I’ve been back online more, reading blogs, following Twitter, and working with customers regularly.  As some of you may know, EMC announced support for pNFS in Celerra with the release of DART 6.x and there have been several recent posts about the technology which piqued my interest a little.

The other bloggers have done a good job of describing what pNFS is and what is new in NFS4.1 itself so I won’t repeat all of that.  I want to focus specifically on pNFS and why it IS a big deal.

Prior to my coming to work for EMC, I worked in internal IT at company that deals with large binary files in support of product development, as well as video editing for marketing purposes.  I had a chance to evaluate, implement, and support multiple clustered file system technologies.  The first was for an HD video editing solution using Mac’s and we followed the likely path of implementing Apple’s XSAN solution which you may know is an OEM’d version of Quantum(ADIC) StorNext.  StorNext allows you to create large filesystems across many disks and access them as local disk on many clients.  File Open, Close, byte-range locking, etc are handled by MetaData Controllers (MDCs) across an IP network while the actual heavy lifting of read/write IO is done over FibreChannel from the clients to the storage directly.  All the shared filesystem benefits of NAS with the performance benefits of SAN.

The second project was specifically targeted at moving large files (4+GB each) through a workflow across many computers as quickly as possible so we could ship products.  Faster processing of the workflow translated to more completed projects per person/per day which meant better margins and keeping our partners and customers happy.  The workflow was already established, using Windows based computers and a file server.  The file server was running out of steam and the amount of data being stored at any given time had increased from 500GB to 8TB over the past 12 months.  We needed a simple way to increase the performance of the file server and also allow for better scalability.  Working with our local EMC SE, we tested and deployed MPFSi using a Celerra NS40 with integrated storage.

MPFS has been around a long time (also known as High Road) and works with Windows and various *nix based platforms.  It is similar to XSAN/StorNext in that open/close/locking activity is handled over IP by the metadata controller (the Celerra datamover in the case of MPFS) while the read/write IO is handled over block storage technology (MPFS supports FibreChannel and iSCSI connectivity to storage).  The advantage of MPFS over many other solutions is that the metadata controller and storage are all built-in to the EMC Celerra storage device and you don’t have to deploy any other servers.

In our case we chose iSCSI due to the cost of FC (switches and HBAs) and used the GigE ports on the Celerra’s CX3 backend for block connectivity.  In testing we showed that CIFS alone provided approximately 240mbps of throughput over GigE connections while enabling MPFSi netted about 750mbps, even if we used the same NIC on the client.  So we tripled throughput over the same LAN by installing a software client.  Had we gone the extra mile to deploy FibreChannel for the block IO we would have seen much higher throughput.

Even better, the use of MPFS did not preclude the use of NDMP for backup to tape directly from the Celerra, accelerating backup many times over the old fileserver.  For clients that did not have MPFS software installed, they accessed the same files over traditional CIFS with no problems.  Another side benefit of MPFS over traditional CIFS, is that the block I/O stack is much more efficient than the NAS I/O stack so even with increased throughput, CPU utilization is lower on the client returning cycles to the application which is doing work for your business.

There are many clustered file system / clustered NAS solutions on the market from a variety of vendors (StorNext, MPFS, GFS, Polyserve, etc) and most of these products are trying to solve the same basic problems of storing more data and increasing performance.  The problem is they are all proprietary and because of that you end up with multiple solutions deployed in the same company.  In our case we couldn’t use MPFS for the video editing solution because EMC has not provided a client for Mac OSX.  And this is where pNFS really becomes attractive.  Storage vendors and operating system vendors alike will be upgrading the already ubiquitous NFS stack in their code to support NFS4.1 and pNFS.  And that support means that I could deploy an EMC Celerra MPFS like solution using the same Celerra based storage, with no extra servers, and no special client software, just the native NFS client in my operating system of choice.  Perhaps Apple will include a pNFS capable client in a future version of Mac OSX.

If you look at the pNFS standard you’ll see that it supports the use of not only block storage, but object and file based storage as well.  So as we build out larger and larger environments and private clouds start to expand into public clouds you could tier your pNFS data across FiberChannel storage, object storage (think Atmos on premises), as well as out to a service provider cloud (ie: AT&T Synaptic).  Now you’ve dramatically increased performance for the data that needs it, saved money storing the data that you need to keep long term, and geographically dispersed the data that needs to be close to users, with a single protocol supported by most of the industry and a single point of management.

Personally I think pNFS could kill off proprietary solutions over the long run unless they include support for it in their products.

This is just my opinion of course…

EMC CLARiiON and Celerra Updates – Defining Unified Storage

Posted on by

This past week, during EMC World 2010 in Boston, EMC made several announcements of updates to the Celerra and CLARiiON midrange platforms.  Some of the most impressive were new capabilities coming to CLARiiON FLARE in just a couple short months.  Major updates to Celerra DART will coincide with the FLARE updates and if you are already running CLARiiON CX4 hardware, or are evaluating CX4 (or Celerra), you will want to check these new features out.  They will be available to existing CX4(120,240,480,960)/NS(120,480,960) systems as part of a software update.

Here’s a list of key changes in FLARE 30:

  • Unified management for midrange storage platforms including CLARiiON and Celerra today, plus RecoverPoint, Replication Manager and more in the future.  This is a true single pane of glass for monitoring AND managing SAN, NAS, and data protection and it’s built in to the platform.  “EMC Unisphere” replaces Navisphere Manager and Celerra Manager and supports multiple storage systems simultaneously in a single window. (Video Demo)
  • Extremely large cache (ie: FASTCache) – Up to 2TB of additional read/write cache in CLARiiON using SSDs (Video Demo)
  • Block level Fully Automated Storage Tiering (ie: sub-LUN FAST) – Fully automated assignment of data across multiple disk types
  • Block Level Compression – Compress LUNs in the CLARiiON to reduce disk space requirements
  • VAAI Support – Integrate with vSphere ESX for improved performance

These features are in addition to existing features like:

  • Seamless and non-disruptive mobility of LUNs within a storage array – (via Virtual LUNs)
  • Non-Disruptive Data Migration – (via PowerPath Migration Enabler)
  • VMWare Aware Storage Management – (Navisphere, Unisphere, and vSphere Plugins giving complete visibility  and self-service provisioning for VMWare admins (Video Demo) AND Storage Admins
  • CIFS and NFS Compression – Compress production data on Celerra to reduce disk space requirements including VMs
  • Dynamic SAN path load balancing – (via PowerPath)
  • At-Rest-Encryption – (via PowerPath w/RSA)
  • SSD, FC, and SATA drives in the same system – Balance performance and capacity as needed for your application
  • Local and Remote replication with array level consistency – (SnapView, MirrorView, etc)
  • Hot-swap, Hot-Add, Hot-Upgrade IO Modules – Upgrade connectivity for FC, FCoE, and iSCSI with no downtime
  • Scale to 1.8PB of storage in a single system
  • Simultaneously provide FC, iSCSI, MPFS, NFS, and CIFS access

All together, this is an impressive list of features for a single platform. In fact, while many of EMC’s competitors have similar features, none of them have all of them in the same platform, or leverage them all simultaneously to gain efficiency.  When CLARiiON CX4 and Celerra NS are integrated and managed as a single Unified storage system with EMC Unisphere there is tremendous value as I’ll point out below…

Improve Performance easily…

  • Install a couple SSD drives into a CLARiiON and enable FASTCache to increase the array’s read/write cache from the industry competive 4GB-32GB up to 2TB of array based non-volatile Read AND Write cache available to ALL applications including NAS data hosted by the array.
  • Install PowerPath on Windows, Linux, Solaris, AND VMWare ESX hosts to automatically balance IO across all available paths to storage.  PowerPath detects latency and queuing occuring on each path and adjusts automatically, improving performance at the storage array AND for your hosts.  This is a huge benefit in VMWare environments especially.
  • When VMWare releases the updated version of vSphere ESX that supports VAAI, ESX will be able to leverage VAAI support in the CLARiiON to reduce the amount of IO required to do many tasks, improving performance across the environment again.
  • Upgrade from 1gbe iSCSI to 10gbe iSCSI, or from 4gbe FiberChannel to 8gbe FiberChannel, without a screwdriver or downtime.
  • Provide NAS shared file access with block-level performance for any application using EMC’s MPFS protocol.

Improve Efficiency and cost easily…

  • Create a single pool of storage containing some SSD, some FC, and some SATA drives, that automatically monitors and moves portions of data to the appropriate disk type to both improve performance AND decrease cost simultaneously.
  • Non-disruptively compress volumes and/or files with a single click to save 50% of your disk space in many cases.
  • Convert traditional LUNs to more efficient Thin-LUNs non-disruptively using PowerPath Migration Enabler, saving more disk space.

Increase and Manage Capacity easily…

  • Add additional storage non-disruptively with SSD, FC, and SATA drives in any mix up to 1.8PB of raw storage in a single CLARiiON CX4.
  • Using FASTCache, iSCSI, FC, and FCoE connectivity simultaneously does not reduce total capacity of the system.
  • Expanding LUNs, RAID Groups, and Storage Pools is non-disruptive.
  • Migrating LUNs between RAID groups and/or Storage Pools is non-disruptive using built-in CLARiiON LUN Migration, as is migrating data to a different storage array (using PowerPath Migration Enabler)!
  • Balancing workload between storage processors is non-disruptive and at individual LUN granularity.

Protect your data easily…

  • Snapshot, Clone, and Replicate any of the data to anywhere with built in array tools that can maintain complete data consistency across a single, or multiple applications without installing software.
  • Maintain application consistency for Exchange, SQL, Oracle, SAP, and much more, even within VMWare VMs, while replicating to anywhere with a single pane-of-glass.
  • Encrypt sensitive data seamlessly using PowerPath Encryption w/RSA.

Maintain Flexibility…

  • While you can do all of these things quickly and simply, you still have the flexibility to create traditional RAID sets using RAID 0, 1, 5, 6, and 10 where you need highly predicable performance, or tune read and write cache at the array and LUN level for specific workloads.  Do you want read/write snapshots? How about full copy clones on completely separate disks for workload isolation and failure protection? What about the ability to rollback data to different points in time using snapshots without deleting any other snapshots?  EMC Storage arrays have been able to do this for a long time and that hasn’t changed.

There are few manufacturers aside from EMC that can provide all of these capabilities, let alone provide them within a single platform.  That’s the definition of simple, efficient, Unified Storage in my opinion.